login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227044
a(n) = Sum_{k>=1} k^(2*n)/(2^k).
1
1, 6, 150, 9366, 1091670, 204495126, 56183135190, 21282685940886, 10631309363962710, 6771069326513690646, 5355375592488768406230, 5149688839606380769088406, 5916558242148290945301297750, 8004451519688336984972255078166, 12595124129900132067036747870669270
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (2n)!/(log(2))^(2*n+1).
a(n) = Sum_{k=0..2*n} (-2)^k * k! * Stirling2(2*n, k). - Paul D. Hanna, Apr 15 2018
a(n) = A000629(2*n). - Christian Krause, Nov 22 2022
MATHEMATICA
Table[Sum[k^(2*n)/(2^k), {k, 1, Infinity}], {n, 0, 20}]
a[n_] := PolyLog[-2 n, 1/2]; a[0] = 1; Array[a, 15, 0] (* Peter Luschny, Sep 06 2020 *)
PROG
(PARI) {a(n) = sum(k=0, 2*n, (-2)^k * k! * stirling(2*n, k, 2) )}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Bisection of A000629.
Cf. A080163.
Sequence in context: A013296 A013301 A233734 * A188420 A089482 A126679
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jun 29 2013
STATUS
approved