login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226951
Number of filiform Lie algebras with a certain grading of dimension n over Z_2.
1
1, 1, 2, 4, 4, 6, 6, 10, 10, 16, 14, 20, 18, 26, 20, 32, 28, 36, 32, 44, 40, 56, 46, 56, 54, 74, 60, 82, 64, 84, 68, 86, 74, 100, 84, 106, 92, 114, 98, 126, 104, 126, 112, 138, 122, 156, 134, 152, 140, 170, 142, 172, 152, 194, 176, 188, 170, 222, 196, 232, 184
OFFSET
4,3
COMMENTS
Let G = <X_1,X_2,...,X_n> be a filiform Lie algebra of dimension n over Z_2. Define the grading [X_i,X_j]=c_(i,j)X_(i+j), for i,j >=2 for some constants c_(i,j) in Z_2. How many such algebras there exist on dimension n? The sequence gives us up to a point this numbers starting with dimension four, that is, there exists only one such an algebra with dimension four, 1 again with dimension 5, 2 with dimension 6 and so forth.
LINKS
Grant Cairns, Ana Hinić Galić, and Yuri Nikolayevsky, Totally geodesic subalgebras of nilpotent Lie algebras, arxiv.org 1112.1288
John Tsartsaflis, Maple implementation
CROSSREFS
Sequence in context: A164798 A087554 A281072 * A251557 A231901 A135974
KEYWORD
nonn
AUTHOR
John Tsartsaflis, Jun 24 2013
STATUS
approved