login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226906
Triangle read by rows: T(n,k) is the total number of parts of size k^2, 1 <= k <= n, in the set of partitions of an n X n square lattice into squares, considering only the list of parts.
1
1, 4, 1, 14, 1, 1, 47, 10, 1, 1, 134, 16, 4, 1, 1, 415, 82, 24, 6, 1, 1, 1102, 165, 60, 16, 6, 1, 1, 3076, 621, 169, 90, 22, 8, 1, 1, 7986, 1361, 577, 194, 80, 28, 8, 1, 1, 20930, 4254, 1464, 643, 294, 114, 35, 10, 1, 1, 50755, 9494, 3667, 1491, 858, 297, 148, 41, 10, 1, 1
OFFSET
1,2
COMMENTS
The sequence was derived from the documents in the Links section. The documents are first specified in the Links section of A034295.
The triangle is presented below.
\ k 1 2 3 4 5 6 7 8 9 10 11 12 13
n
1 1
2 4 1
3 14 1 1
4 47 10 1 1
5 134 16 4 1 1
6 415 82 24 6 1 1
7 1102 165 60 16 6 1 1
8 3076 621 169 90 22 8 1 1
9 7986 1361 577 194 80 28 8 1 1
10 20930 4254 1464 643 294 114 35 10 1 1
11 50755 9494 3667 1491 858 297 148 41 10 1 1
12 129977 27241 10474 4858 2239 1272 454 203 51 12 1 1
13 305449 60086 24702 11034 5918 2874 1474 592 249 58 12 1 1
FORMULA
Sum_{k=1..n} T(n,k) * k^2 = A034295(n) * n^2.
EXAMPLE
For n = 3, the partitions are:
Square side 1 2 3
9 0 0
5 1 0
0 0 1
Total 14 1 1
So T(3,1) = 14, T(3,2) = 1, T(3,3) = 1.
MAPLE
b:= proc(n, l) option remember; local i, k, s, t;
if max(l[])>n then {} elif n=0 or l=[] then {0}
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s:={};
for i from k to nops(l) while l[i]=0 do s:=s union
map(v->v+x^(1+i-k), b(n, [l[j]$j=1..k-1,
1+i-k$j=k..i, l[j]$j=i+1..nops(l)]))
od; s
fi
end:
T:= n-> seq(coeff(add(j, j=b(n, [0$n])), x, i), i=1..n):
seq(T(n), n=1..10); # Alois P. Heinz, Jun 21 2013
MATHEMATICA
b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which[Max[l] > n, {}, n == 0 || l == {}, {0}, Min[l] > 0, t = Min[l]; b[n - t, l - t], True, For[k = 1, k <= Length[l], k++, If[l[[k]] == 0, Break[]]]; s = {}; For[i = k, i <= Length[l] && l[[i]] == 0, i++, s = s ~Union~ Map[# + x^(1 + i - k)&, b[n, Join[l[[1 ;; k - 1]], Array[1 + i - k &, i - k + 1], l[[i + 1 ;; Length[l]]]]]]]; s]]; T[n_] := Table[Coefficient[Sum[j, {j, b[n, Array[0 &, n]]}], x, i], {i, 1, n}]; Table[T[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 24 2016, after Alois P. Heinz *)
CROSSREFS
Row sums give: A226897.
Cf. A034295.
Sequence in context: A051928 A347486 A335337 * A378514 A327352 A050156
KEYWORD
nonn,hard,tabl
AUTHOR
STATUS
approved