login
A226059
Expansion of eta(q) * eta(q^9) * eta(q^21)^2 / (eta(q^3)^2 * eta(q^7) * eta(q^63)) in powers of q.
1
1, -1, -1, 2, -2, -1, 5, -3, -4, 8, -5, -6, 16, -8, -11, 23, -15, -16, 39, -21, -26, 58, -35, -39, 92, -51, -58, 132, -77, -85, 194, -108, -125, 276, -156, -174, 393, -218, -245, 542, -304, -336, 755, -417, -467, 1026, -573, -627, 1401, -770, -853, 1870
OFFSET
-1,4
LINKS
FORMULA
Euler transform of period 63 sequence [ -1, -1, 1, -1, -1, 1, 0, -1, 0, -1, -1, 1, -1, 0, 1, -1, -1, 0, -1, -1, 0, -1, -1, 1, -1, -1, 0, 0, -1, 1, -1, -1, 1, -1, 0, 0, -1, -1, 1, -1, -1, 0, -1, -1, 0, -1, -1, 1, 0, -1, 1, -1, -1, 0, -1, 0, 1, -1, -1, 1, -1, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (u*v - 3) - (u+v) * (u^2 + u*v + v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (63 t)) = 1 / f(t) where q = exp(2 Pi i t).
EXAMPLE
1/q - 1 - q + 2*q^2 - 2*q^3 - q^4 + 5*q^5 - 3*q^6 - 4*q^7 + 8*q^8 - 5*q^9 + ...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; b := eta[q]*eta[q^9]*eta[q^21]^2/ (eta[q^3]^2*eta[q^7]*eta[q^63]); a:= CoefficientList[Series[q*b , {q, 0, 100}], q]; Table[a[[n]], {n, 1, 80}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^9 + A) * eta(x^21 + A)^2 / (eta(x^3 + A)^2 * eta(x^7 + A) * eta(x^63 + A)), n))}
CROSSREFS
Sequence in context: A184050 A367094 A324798 * A353738 A127742 A110438
KEYWORD
sign
AUTHOR
Michael Somos, May 24 2013
STATUS
approved