login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225829
Number of binary pattern classes in the (5,n)-rectangular grid: two patterns are in the same class if one of them can be obtained by a reflection or 180-degree rotation of the other.
7
1, 20, 288, 8640, 263680, 8407040, 268517376, 8590786560, 274882625536, 8796137062400, 281475261923328, 9007201737768960, 288230393868451840, 9223372185031147520, 295147906296044322816, 9444732974878980833280, 302231454974575793668096, 9671406557490978467348480
OFFSET
0,2
FORMULA
a(n) = 32*a(n-1) + 32*a(n-2) - 1024*a(n-3)- 2^(3n - 3)*3 with n>2, a(0)=1, a(1)=20, a(2)=288.
a(n) = 2^(5n/2-1)*(2^(5n/2-1) + 2^(n/2-1) + 1) if n is even,
a(n) = 2^((5n-1)/2-1)*(2^((5n-1)/2) + 2^((n-1)/2) + 5) if n is odd.
G.f.: (1-20*x-288*x^2+2880*x^3)/((1-8*x)*(1-32*x)*(1-32*x^2)). [Bruno Berselli, May 17 2013]
MATHEMATICA
LinearRecurrence[{40, -224, -1280, 8192}, {1, 20, 288, 8640}, 20] (* Bruno Berselli, May 17 2013 *)
CoefficientList[Series[(1 - 20 x - 288 x^2 + 2880 x^3) / ((1 - 8 x) (1 - 32 x) (1 - 32 x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Sep 04 2013 *)
PROG
(Magma) I:=[1, 20, 288, 8640]; [n le 4 select I[n] else 40*Self(n-1)-224*Self(n-2)-1280*Self(n-3)+8192*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Sep 04 2013
CROSSREFS
A005418 is the number of binary pattern classes in the (1,n)-rectangular grid.
A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11 .
A225910 is the table of (m,n)-rectangular grids.
Sequence in context: A231105 A016314 A021164 * A017918 A329710 A125477
KEYWORD
nonn,easy
AUTHOR
Yosu Yurramendi, May 16 2013
STATUS
approved