login
A225422
Largest number k such that k < d(k)^(n/10), where d(k) is the number of divisors of k.
0
2, 2, 6, 12, 12, 24, 60, 180, 360, 1260, 5040, 15120, 55440, 166320, 831600, 4324320, 36756720, 367567200, 2327925600, 27935107200
OFFSET
11,1
COMMENTS
Each of these numbers is the product of small primes. For example, a(30) = 2^7 2^3 5^2 7 11 13 17 19. - T. D. Noe, May 16 2013
MATHEMATICA
Table[last = 0; Do[If[n < DivisorSigma[0, n]^(i/10), last = n], {n, 10^4}]; last, {i, 11, 20}]
CROSSREFS
Cf. A034884 (n < d(n)^2), A056757 (n < d(n)^3), A225729-A225738.
Sequence in context: A219694 A054481 A262501 * A290518 A242882 A361426
KEYWORD
nonn
AUTHOR
T. D. Noe, May 15 2013
STATUS
approved