login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224500
Number of ordered full binary trees with labels from a set of at most n labels.
2
1, 4, 21, 184, 2425, 42396, 916909, 23569456, 701312049, 23697421300, 896146948741, 37491632258664, 1719091662617641, 85724109916049164, 4618556912276116125, 267351411229327901536, 16547551265061986364769, 1090506038795558789135076, 76234505063400211010327029
OFFSET
1,2
COMMENTS
a(n) is also the maximum number of different operations with n operands for a non-associative non-commutative binary operator.
a(n) is also the second column of A185946.
LINKS
FORMULA
a(n) = Sum_{k=1..n} permutations(n, k)*Catalan(k-1);
a(n) = Sum_{k=1..n} binomial(n, k)*quadruple_factorial(k-1);
a(n) = Sum_{k=1..n} n!(2k-2)!/((n-k)!k!(k-1)!).
a(1)=1, a(2)=4, a(n) = (4n-5)*a(n-1) - (4n-4)*a(n-2) + 1 for n > 2. - Giovanni Resta, Apr 08 2013
E.g.f.: exp(x)*(1-sqrt(1-4*x))/2. - Mark van Hoeij, Apr 10 2013
G.f.: hypergeom([1,1/2],[],4*x/(1-x))*x/(1-x)^2. - Mark van Hoeij, Apr 10 2013
a(n) ~ 2^(2*n-3/2)*n^(n-1)*exp(1/4-n). - Vaclav Kotesovec, Aug 16 2013
EXAMPLE
For n=3, the a(3)=21 solutions are:
a b c
ab ba ac ca bc cb
(ab)c a(bc)
(ac)b a(cb)
(ba)c b(ac)
(bc)a b(ca)
(ca)b c(ab)
(cb)a c(ba)
MATHEMATICA
a[n_] := Sum[Binomial[n, k]*(2*k-2)! / (k-1)!, {k, n}]; Array[a, 20] (* Giovanni Resta, Apr 08 2013 *)
PROG
(Racket)
#lang racket
(require math/number-theory)
(define (a n)
(for/sum ([k (in-range 1 (+ n 1))])
(* (binomial n k)
(/ (factorial (* 2 (- k 1)))
(factorial (- k 1))))))
(PARI) x='x+O('x^66); Vec(serlaplace(exp(x)*(1-sqrt(1-4*x))/2)) /* Joerg Arndt, Apr 10 2013 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Laurent Orseau, Apr 08 2013
STATUS
approved