login
A224173
T(n,k)=Number of nXk 0..3 arrays with rows and antidiagonals unimodal and columns nondecreasing
12
4, 16, 10, 50, 100, 20, 130, 684, 400, 35, 296, 3526, 4739, 1225, 56, 610, 14751, 38561, 22988, 3136, 84, 1163, 52591, 242114, 272130, 87878, 7056, 120, 2083, 165212, 1253770, 2335459, 1460836, 282372, 14400, 165, 3544, 468292, 5588411, 15925611
OFFSET
1,1
COMMENTS
Table starts
...4....16.......50.......130.........296..........610...........1163
..10...100......684......3526.......14751........52591.........165212
..20...400.....4739.....38561......242114......1253770........5588411
..35..1225....22988....272130.....2335459.....15925611.......91494280
..56..3136....87878...1460836....16625026....143558572.....1012166273
..84..7056...282372...6425876....95808564...1038484760.....8857798353
.120.14400...794220..24197608...468021427...6360047093....65713691148
.165.27225..2010035..80350989..1994287334..33901838632...426013124302
.220.48400..4668304.240416852..7568051210.160168789130..2451904991177
.286.81796.10095924.658890738.25994968917.680269560125.12667946702827
LINKS
FORMULA
Empirical: columns k=1..7 are polynomials of degree 3*k for n>0,0,0,3,6,9,12
Empirical: rows n=1..5 are polynomials of degree 6*n for k>0,0,0,2,6
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..0....0..0..1..2....0..0..3..0....0..2..0..0....0..3..3..1
..1..3..3..1....0..1..3..2....3..3..3..1....1..2..0..0....1..3..3..1
..1..3..3..3....0..3..3..2....3..3..3..2....2..2..1..0....1..3..3..3
CROSSREFS
Column 1 is A000292(n+1)
Column 2 is A001249
Row 1 is A223659
Row 2 is A223865
Sequence in context: A067178 A346460 A181717 * A223864 A223987 A224123
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 31 2013
STATUS
approved