OFFSET
1,4
COMMENTS
LINKS
R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410—414.
R. P. Stanley, Acyclic orientation of graphs, Discrete Math., Volume 306, Issues 10-11, 28 May 2006, Pages 905-909.
Eric Weisstein's World of Mathematics, k-Colorable Graph
Wikipedia, Graph coloring
FORMULA
Let E(x) = Sum_{n>=0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is (E(x) - 1)^4 = 1536*x^4/(4!*2^6) + 122880*x^5/(5!*2^10) + 10813440*x^6/(6!*2^15) + ... + a(n)*x^n/(n!*2^(n*(n-1)/2)) + ... (see Read).
MATHEMATICA
nn=20; e[x_]:=Sum[x^n/(n!*2^Binomial[n, 2]), {n, 0, nn}]; Table[n!*2^Binomial[n, 2], {n, 0, nn}]CoefficientList[Series[(e[x]-1)^4, {x, 0, nn}], x] (* Geoffrey Critzer, Aug 11 2014 *)
PROG
(PARI)
N=16; x='x+O('x^N);
E=sum(n=0, N, x^n/(n!*2^binomial(n, 2)) );
tgf=(E-1)^4;
v=concat([0, 0, 0], Vec(tgf));
v=vector(#v, n, v[n] * n! * 2^(n*(n-1)/2) )
/* Joerg Arndt, Apr 10 2013 */
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Peter Bala, Apr 10 2013
STATUS
approved