login
A223949
T(n,k)=Number of nXk 0..1 arrays with diagonals and antidiagonals unimodal and rows nondecreasing
12
2, 3, 4, 4, 9, 8, 5, 16, 27, 16, 6, 25, 54, 81, 32, 7, 36, 96, 177, 243, 64, 8, 49, 157, 321, 596, 729, 128, 9, 64, 241, 558, 1062, 2024, 2187, 256, 10, 81, 352, 928, 1821, 3645, 6869, 6561, 512, 11, 100, 494, 1479, 3115, 5951, 12856, 23285, 19683, 1024, 12, 121
OFFSET
1,1
COMMENTS
Table starts
....2.....3......4......5......6.......7.......8.......9......10......11
....4.....9.....16.....25.....36......49......64......81.....100.....121
....8....27.....54.....96....157.....241.....352.....494.....671.....887
...16....81....177....321....558.....928....1479....2267....3356....4818
...32...243....596...1062...1821....3115....5233....8564...13613...21017
...64...729...2024...3645...5951....9919...16845...28558...47721...78071
..128..2187...6869..12856..20275...31899...52532...89135..152495..259230
..256..6561..23285..45626..71653..106838..166076..272997..464837..802560
..512.19683..78942.161604.257568..372791..545443..849070.1401993.2401956
.1024.59049.267681.571202.928047.1333858.1866509.2733557.4294573.7150718
LINKS
FORMULA
Empirical: columns k=1..7 have recurrences of order 1,1,5,10,16,24,33
Empirical: rows n=1..7 are polynomials of degree n for k>0,0,1,2,3,4,5
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1....0..0..0..1....1..1..1..1....0..0..0..1....0..0..0..0
..0..0..1..1....0..1..1..1....0..1..1..1....0..0..0..0....0..0..0..1
..0..0..1..1....0..1..1..1....0..0..0..0....0..0..0..1....0..1..1..1
CROSSREFS
Column 1 is A000079
Column 2 is A000244
Row 1 is A000027(n+1)
Row 2 is A000290(n+1)
Sequence in context: A269619 A269435 A269656 * A224133 A228740 A269583
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 29 2013
STATUS
approved