login
A223500
Petersen graph (3,1) coloring a rectangular array: number of nX4 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0
1
27, 631, 16323, 426359, 11148439, 291545903, 7624417031, 199391762123, 5214442630935, 136366781617267, 3566229514618067, 93263130563653603, 2438993757290874987, 63783946691623236183, 1668061610819558039475
OFFSET
1,1
COMMENTS
Column 4 of A223504
LINKS
FORMULA
Empirical: a(n) = 31*a(n-1) -127*a(n-2) -20*a(n-3) +705*a(n-4) -1027*a(n-5) +499*a(n-6) -60*a(n-7)
EXAMPLE
Some solutions for n=3
..0..1..4..1....0..1..2..1....0..3..5..4....0..3..0..3....0..1..0..3
..4..3..4..3....4..1..4..5....5..3..5..3....4..3..4..1....0..1..4..1
..0..3..0..1....4..5..2..1....0..3..5..2....5..3..0..1....0..3..4..3
CROSSREFS
Sequence in context: A099753 A231292 A046359 * A060603 A116988 A113364
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 21 2013
STATUS
approved