OFFSET
1,1
COMMENTS
A representation of a(n) as a sum of four nonzero squares is denoted by [s(1),s(2),s(3),s(4)] with nondecreasing entries > 1 and Sum_{j=1..4} s(j)^2 = a(n). It is called primitive if gcd(s(1),s(2),s(3),s(4)) = 1. a(n) is the number with at least one such primitive representation for n, and the multiplicity m is given by the non-vanishing entries of A097203, that is A097203(a(n)).
FORMULA
A097203(a(n)) is not 0.
EXAMPLE
a(1) = 4 because 4 has the primitive representation [1, 1, 1, 1].
a(16) = 28, because 28 has the primitive representations [1, 1, 1, 5] and [1, 3, 3, 3] ([2, 2, 2, 4] is not primitive.).
4: [1, 1, 1, 1], 7: [1, 1, 1, 2], 10: [1, 1, 2, 2], 12: [1, 1, 1, 3], 13: [1, 2, 2, 2], 15: [1, 1, 2, 3], 18: [1, 2, 2, 3],
19: [1, 1, 1, 4], 20: [1, 1, 3, 3], 21: [2, 2, 2, 3], 22: [1, 1, 2, 4], 23: [1, 2, 3, 3], 25: [1, 2, 2, 4], 26: [2, 2, 3, 3], 27: [1, 1, 3, 4], 28: [1, 1, 1, 5], [1, 3, 3, 3], ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Mar 25 2013
STATUS
approved