login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Central terms in rows of triangle A220178.
2

%I #5 Feb 06 2013 20:07:03

%S 1,6,150,4200,131670,4360356,149885736,5287716720,190170736470,

%T 6941694002100,256393942704900,9561265547652000,359399657792284200,

%U 13600394660797333200,517621830467456905200,19798076590576557847200,760517744810283004728150,29325625363665142395552900

%N Central terms in rows of triangle A220178.

%F a(n) = (2*n+1)*binomial(2*n,n)*A222050(n), where the g.f. G(x) of A222050 satisfies: G(x) = sqrt(1 + 2*x*G(x)^4 + 3*x^2*G(x)^6).

%F a(n) = [x^n] d^(2*n)/dx^(2*n) (1+x+x^2)^(2*n) / (2*n)!, by definition.

%o (PARI) /* As Central Terms in Rows of Triangle A220178: */

%o {A220178(n, k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)), n, x), k, y)}

%o {a(n)=A220178(2*n, n)}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A220178, A222050, A222052.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Feb 06 2013