login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222050
G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x)^4 + 3*x^2*A(x)^6).
3
1, 1, 5, 30, 209, 1573, 12478, 102714, 869193, 7514445, 66083025, 589294500, 5316256278, 48431659786, 444928748618, 4117185679310, 38340948482745, 359047299072777, 3379057486089649, 31942315551724102, 303158909307122141, 2887629443604011421, 27595392738011189028
OFFSET
0,3
FORMULA
G.f.: sqrt( (1/x)*Series_Reversion( x*(1-2*x-3*x^2) ) ).
a(n) = [x^n] sqrt( 1/(1-2*x-3*x^2)^(2*n+1) ) / (2*n+1).
a(n) = A222052(n)/(2*n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 30*x^3 + 209*x^4 + 1573*x^5 + 12478*x^6 +...
Related expansions.
A(x)^2 = 1 + 2*x + 11*x^2 + 70*x^3 + 503*x^4 + 3864*x^5 + 31092*x^6 +...
A(x)^4 = 1 + 4*x + 26*x^2 + 184*x^3 + 1407*x^4 + 11280*x^5 + 93606*x^6 +...
A(x)^6 = 1 + 6*x + 45*x^2 + 350*x^3 + 2844*x^4 + 23814*x^5 + 204149*x^6 +...
where A(x)^2 = 1 + 2*x*A(x)^4 + 3*x^2*A(x)^6.
Let G(x) = 1/sqrt(1-2*x-3*x^2) denote the g.f. of A002426,
then the array of coefficients of x^k in G(x)^(2*n+1) begins:
G(x)^1 : [1, 1, 3, 7, 19, 51, 141, 393,...];
G(x)^3 : [1, 3, 12, 40, 135, 441, 1428, 4572,...];
G(x)^5 : [1, 5, 25, 105, 420, 1596, 5880, 21120,...];
G(x)^7 : [1, 7, 42, 210, 966, 4158, 17094, 67782,...];
G(x)^9 : [1, 9, 63, 363, 1881, 9009, 40755, 176319,...];
G(x)^11: [1, 11, 88, 572, 3289, 17303, 85228, 398684,...];
G(x)^13: [1, 13, 117, 845, 5330, 30498, 162214, 814606,...];
G(x)^15: [1, 15, 150, 1190, 8160, 50388, 287470, 1540710,...]; ...
in which the main diagonal (A222052) forms this sequence like so:
[1/1, 3/3, 25/5, 210/7, 1881/9, 17303/11, 162214/13, 1540710/15,...].
PROG
(PARI) {a(n)=polcoeff(sqrt(1/x*serreverse(x*(1-2*x-3*x^2)+x^2*O(x^n))), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=polcoeff(1/sqrt(1-2*x-3*x^2+x*O(x^n))^(2*n+1), n)/(2*n+1)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2013
STATUS
approved