login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221949
Expansion of (-x+2*x^2-x^3-x^4-2*x^5)/(-1+3*x-2*x^2-x^4+x^5).
1
0, 1, 1, 2, 5, 12, 26, 53, 104, 199, 375, 700, 1299, 2402, 4432, 8167, 15038, 27677, 50925, 93686, 172337, 317000, 583078, 1072473, 1972612, 3628227, 6673379, 12274288, 22575967, 41523710, 76374044, 140473803, 258371642, 475219577, 874065113, 1607656426, 2956941213, 5438662852, 10003260594, 18398864765, 33840788320, 62242913791, 114482566991
OFFSET
0,4
LINKS
M. Dairyko, S. Tyner, L. Pudwell and C. Wynn, Non-contiguous pattern avoidance in binary trees, 2012, arXiv:1203.0795 [math.CO], p. 18 (Class F).
Michael Dairyko, Lara Pudwell, Samantha Tyner, Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
FORMULA
G.f.: x*(1-2*x+x^2+x^3+2*x^4)/((1-x)^2*(1-x-x^2-x^3)).
MATHEMATICA
Join[{0}, LinearRecurrence[{3, -2, 0, -1, 1}, {1, 1, 2, 5, 12}, 50]] (* Harvey P. Dale, Nov 12 2014 *)
CoefficientList[Series[x*(1-2*x+x^2+x^3+2*x^4)/((1-x)^2*(1-x-x^2-x^3)) , {x, 0, 50}], x] (* Stefano Spezia, Nov 29 2018 *)
CROSSREFS
Sequence in context: A116717 A116725 A193263 * A262803 A026622 A297618
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 01 2013
STATUS
approved