login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221948
Expansion of (x-5*x^2+11*x^3-12*x^4+7*x^5-2*x^6+x^7) / (1-6*x+15*x^2-20*x^3+15*x^4-6*x^5+x^6).
1
0, 1, 1, 2, 5, 12, 26, 52, 98, 176, 303, 502, 803, 1244, 1872, 2744, 3928, 5504, 7565, 10218, 13585, 17804, 23030, 29436, 37214, 46576, 57755, 71006, 86607, 104860, 126092, 150656, 178932, 211328, 248281, 290258, 337757, 391308, 451474, 518852, 594074, 677808, 770759, 873670, 987323, 1112540, 1250184, 1401160, 1566416, 1746944, 1943781, 2158010
OFFSET
0,4
LINKS
M. Dairyko, S. Tyner, L. Pudwell and C. Wynn, Non-contiguous pattern avoidance in binary trees, 2012, arXiv:1203.0795 [math.CO], p. 17 (Class D).
Michael Dairyko, Lara Pudwell, Samantha Tyner, Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
FORMULA
G.f.: x*(1-5*x+11*x^2-12*x^3+7*x^4-2*x^5+x^6)/(1-x)^6.
a(n) = (n-1)*(n^4-14*n^3+111*n^2-354*n+480)/120 for n>1. - Bruno Berselli, Feb 06 2013
MATHEMATICA
CoefficientList[Series[(x - 5 x^2 + 11 x^3 - 12 x^4 + 7 x^5 - 2 x^6 + x^7) / (1 - 6 x + 15 x^2 - 20 x^3 + 15 x^4 - 6 x^5 + x^6), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 1, 2, 5, 12, 26, 52}, 60] (* Harvey P. Dale, May 07 2018 *)
CROSSREFS
Sequence in context: A258099 A132977 A027927 * A116717 A116725 A193263
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 01 2013
STATUS
approved