login
A221215
T(n,k)= ((n+k)^2-2*(n+k)+4-(n+3*k-2)*(-1)^(n+k))/2; n , k > 0, read by antidiagonals.
3
1, 6, 5, 2, 3, 4, 15, 14, 13, 12, 7, 8, 9, 10, 11, 28, 27, 26, 25, 24, 23, 16, 17, 18, 19, 20, 21, 22, 45, 44, 43, 42, 41, 40, 39, 38, 29, 30, 31, 32, 33, 34, 35, 36, 37, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 91
OFFSET
1,2
COMMENTS
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). Let m be natural number. The order of the list:
T(1,1)=1;
T(1,3), T(2,2), T(3,1);
T(2,1), T(1,2);
. . .
T(1,2*m+1), T(2,2*m), T(3,2*m-1), ... T(2*m+1,1);
T(2*m,1), T(2*m-1,2), T(2*m-2,3),...T(1,2*m);
. . .
First row contains elements antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read downwards.
second row contains elements antidiagonal {T(1,2*m), ... T(2*m,1)}, read upwards.
The same as A211394, except for reversed order in even diagonals. - M. F. Hasler, Feb 26 2013
FORMULA
As table
T(n,k)= ((n+k)^2-2*(n+k)+4-(n+3*k-2)*(-1)^(n+k))/2.
As linear sequence
a(n) = (A003057(n)^2-2*A003057(n)+4-(A002260(n)+3*A004736(n)-2)*(-1)^A003056(n))/2; a(n) = ((t+2)^2-2*(t+2)+4-(i+3*j-2)*(-1)^t)/2,
where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2).
EXAMPLE
The start of the sequence as table:
1....6...2..15...7..28..16...
5....3..14...8..27..17..44...
4...13...9..26..18..43..31...
12..10..25..19..42..32..63...
11..24..20..41..33..62..50...
23..21..40..34..61..51..86...
22..39..35..60..52..85..73...
. . .
The start of the sequence as triangle array read by rows:
1;
6,5;
2,3,4;
15,14,13,12;
7,8,9,10,11;
28,27,26,25,24,23;
16,17,18,19,20,21,22;
. . .
Row number r contains r consecutive numbers.
If r is odd, row is increasing.
If r is even, row is decreasing.
MATHEMATICA
T[n_, k_] := ((n+k)^2 - 2(n+k) + 4 - (n+3k-2)(-1)^(n+k))/2;
Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 05 2019 *)
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=((t+2)**2-2*(t+2)+4-(i+3*j-2)*(-1)**t)/2
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Feb 22 2013
STATUS
approved