login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220752
Terms of A220698 that appear in A224218.
1
3854, 3854, 3035, 3035, 3035, 3035, 3854, 4644, 4644, 4644, 4644, 4644, 3854, 15846, 4644, 4644, 4644, 4644, 4644, 22918, 15846, 15846, 10225, 10225, 10225, 10225, 15846, 22918, 15846, 13364, 13364, 13364, 13364, 10225, 10225, 10225, 10225, 15846, 13364, 13364, 22918, 45012
OFFSET
1,1
COMMENTS
Terms of A220698 excluding terms that do not appear in A224218.
Indices of XOR-positive triangular numbers such that the generated triangular number is also XOR-positive (definition: triangular(i) is XOR-positive if triangular(i) XOR triangular(i+1) = triangular(k) for some k). XOR is the bitwise logical exclusive-or operator.
Conjecture: the sequence is infinite.
The subsequence with only odd terms begins: 3035, 3035, 3035, 3035, 10225, 10225, 10225, 10225, 10225, 10225, 10225, 10225, 171449, 171449, 236985, 171449, 339249.
PROG
(C)
#include <stdio.h>
typedef unsigned long long U64;
U64 rootTriangular(U64 a) {
U64 sr = 1L<<32, s, b;
if (a < (sr/2)*(sr+1)) {
sr>>=1;
while (a < sr*(sr+1)/2) sr>>=1;
}
for (b = sr>>1; b; b>>=1) {
s = sr+b;
if (a >= s*(s+1)/2) sr = s;
}
return sr;
}
int main() {
U64 a, n, r, t;
for (n=0; n < (1L<<32)-1; n++) {
a = (n*(n+1)/2) ^ ((n+1)*(n+2)/2);
t = rootTriangular(a);
if (a == t*(t+1)/2) {
a ^= (t+1)*(t+2)/2;
r = rootTriangular(a);
if (a == r*(r+1)/2) printf("%llu, ", t);
}
}
}
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Alex Ratushnyak, Apr 13 2013
STATUS
approved