login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220265
Triangle where the g.f. of row n is: Sum_{k=0..n^2-n+1} T(n,k)*y^k = (2*(1+y)^n - 1) * ((1+y)^n - 1)^(n-1) / y^(n-1), as read by rows.
3
1, 2, 2, 9, 8, 2, 9, 72, 177, 222, 163, 72, 18, 2, 64, 800, 3696, 9800, 17408, 22284, 21340, 15554, 8652, 3633, 1120, 240, 32, 2, 625, 11250, 82500, 365000, 1131750, 2654250, 4922750, 7425000, 9274150, 9704600, 8566200, 6398000, 4042345, 2152890, 959690, 354020
OFFSET
1,2
COMMENTS
Based on the identity:
1 = Sum_{n>=1} (2*G(x)^n - 1) * (1 - G(x)^n)^(n-1) for all G(x) such that G(0)=1.
LINKS
FORMULA
0 = Sum_{k=0..n-1} (-1)^k * T(n-k,k) for n>1.
Antidiagonal sums equal A220266.
Main diagonal equals A220267.
Row sums equal (2^(n+1) - 1)*(2^n - 1)^(n-1).
Position of largest term in row n is: A099392(n) = ceiling(n^2/2) - (n-1).
EXAMPLE
Triangle begins:
1, 2;
2, 9, 8, 2;
9, 72, 177, 222, 163, 72, 18, 2;
64, 800, 3696, 9800, 17408, 22284, 21340, 15554, 8652, 3633, 1120, 240, 32, 2;
625, 11250, 82500, 365000, 1131750, 2654250, 4922750, 7425000, 9274150, 9704600, 8566200, 6398000, 4042345, 2152890, 959690, 354020, 106251, 25300, 4600, 600, 50, 2;
7776, 190512, 2015280, 13222440, 62141310, 225598527, 662159412, 1618976925, 3366367410, 6041884575, 9462175520, 13034476980, 15886286910, 17202209995, 16595155500, 14285514705, 10978477070, 7528219125, 4599186000, 2496823900, 1200043026, 508072257, 188241900, 60515895, 16695030, 3895573, 753984, 117810, 14280, 1260, 72, 2; ...
where the alternating antidiagonal sums equal zero (after the initial '1'):
0 = 2 - 2;
0 = 9 - 9;
0 = 64 - 72 + 8;
0 = 625 - 800 + 177 - 2;
0 = 7776 - 11250 + 3696 - 222;
0 = 117649 - 190512 + 82500 - 9800 + 163; ...
Column 0 forms A000169(n) = n^(n-1) and column 1 equals n^(n-2)*n*(n+1)^2/2.
The largest term in row n, found at position ceiling(n^2/2) - (n-1), begins:
[2, 9, 222, 22284, 9704600, 17202209995, 123106610062800, 3600033286934164416, 421003580776636784633028, 200645860378226792820279591852, ...].
PROG
(PARI) {T(n, k)=polcoeff((2*(1+x)^n-1)*((1+x)^n-1)^(n-1)/x^(n-1), k)}
for(n=1, 6, for(k=0, n^2-n+1, print1(T(n, k), ", ")); print(("")))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Dec 09 2012
STATUS
approved