login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220264
Smallest integer with exactly n semiprime divisors.
16
1, 4, 12, 30, 60, 180, 210, 420, 1260, 6300, 2310, 4620, 13860, 69300, 485100, 30030, 60060, 180180, 900900, 6306300, 69369300, 510510, 1021020, 3063060, 15315300, 107207100, 1179278100, 15330615300, 9699690, 19399380, 58198140, 290990700, 2036934900, 22406283900
OFFSET
0,2
COMMENTS
At the Mar 31 2011 suggestion of Zak Seidov in A086971.
Often a(n+1) = k*a(n) for some integer k.
All terms are cubefree products of primorials (A025487 INTERSECT A004709). - Charles R Greathouse IV, Dec 11 2012
A086971(a(n)) = n and A086971(m) != n for m < a(n). - Reinhard Zumkeller, Dec 14 2012
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
MATHEMATICA
semiPrimeQ[n_] := PrimeOmega@ n == 2; f[n_] := Length@ Select[Divisors@ n, semiPrimeQ@# &]; t = Table[0, {50}]; k = 1; While[k < 10^7, a = f@ k; If[t[[a]] == 0, t[[a]] = k; Print[{a, k}]]; k++]; t
PROG
(PARI) prim(n)=my(v=primes(n)); prod(i=1, #v, v[i])
a(n)=if(n>1, my(L=(sqrtint(8*n+1)+1)\2); prim(L)*prim(n-binomial(L, 2)), 1+3*n) \\ Charles R Greathouse IV, Dec 11 2012
(Haskell)
import Data.List (find); import Data.Maybe (fromJust)
a220264 n = fromJust $ find ((== n) . a086971) a220423_list
-- Reinhard Zumkeller, Sep 08 2015
CROSSREFS
Subsequence of A220423.
Sequence in context: A047177 A048077 A350424 * A367097 A212519 A166213
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Dec 09 2012
EXTENSIONS
a(25)-a(26) from Donovan Johnson, Dec 10 2012
a(27)-a(41) from Charles R Greathouse IV, Dec 11 2012
STATUS
approved