login
A220236
Binary palindromic numbers with only two 0 bits, both in the middle.
2
9, 51, 231, 975, 3999, 16191, 65151, 261375, 1047039, 4191231, 16771071, 67096575, 268410879, 1073692671, 4294868991, 17179672575, 68719083519, 274877120511, 1099510054911, 4398043365375, 17592179752959, 70368731594751, 281474951544831, 1125899856510975
OFFSET
1,1
COMMENTS
Binary expansion is 1001, 110011, 11100111, 1111001111, ...
Last digit of the decimal representation follows the pattern 9, 1, 1, 5, 9, 1, 1, 5, 9, ...
FORMULA
a(n) = 2^(2*n + 2) - 2^(n + 1) - 2^n - 1.
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3). G.f.: 3*x*(4*x-3) / ((x-1)*(2*x-1)*(4*x-1)). - Colin Barker, May 31 2013
MATHEMATICA
Table[2^(2n + 2) - 2^(n + 1) - 2^n - 1, {n, 25}] (* Alonso del Arte, Dec 08 2012 *)
LinearRecurrence[{7, -14, 8}, {9, 51, 231}, 30] (* Harvey P. Dale, Jan 24 2019 *)
PROG
(Python)
for n in range(1, 77):
print (2**(2*n+2)-2**n-2**(n+1)-1),
CROSSREFS
Cf. A129868.
Sequence in context: A055900 A054549 A005746 * A345954 A061178 A246178
KEYWORD
base,easy,nonn
AUTHOR
Alex Ratushnyak, Dec 08 2012
STATUS
approved