login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220178
Triangle where the g.f. for row n equals d^n/dx^n (1+x+x^2)^n / n! for n>=0, as read by rows.
3
1, 1, 2, 3, 6, 6, 7, 24, 30, 20, 19, 80, 150, 140, 70, 51, 270, 630, 840, 630, 252, 141, 882, 2520, 4200, 4410, 2772, 924, 393, 2856, 9576, 19320, 25410, 22176, 12012, 3432, 1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870, 3139, 29070, 126720, 341880, 630630, 828828, 780780, 514800, 218790, 48620
OFFSET
0,3
FORMULA
G.f.: A(x,y) = 1 / sqrt(1-2*x-3*x^2 - 4*x*y).
G.f.: A(x,y) = Sum_{k>=0} binomial(2*k,k) * x^k*y^k / (1-2*x-3*x^2)^(k+1/2).
First column is the central trinomial coefficients (A002426).
Main diagonal is the central binomial coefficients (A000984).
Row sums form the central coefficients of (1+3*x+3*x^2)^n (A122868).
EXAMPLE
Triangle begins:
1;
1, 2;
3, 6, 6;
7, 24, 30, 20;
19, 80, 150, 140, 70;
51, 270, 630, 840, 630, 252;
141, 882, 2520, 4200, 4410, 2772, 924;
393, 2856, 9576, 19320, 25410, 22176, 12012, 3432;
1107, 9144, 35280, 83160, 131670, 144144, 108108, 51480, 12870; ...
The g.f. for column k>=0 equals the central binomial coefficient C(2*k,k) times x^k*y^k*G(x)^(2*k+1) where G(x) = 1/sqrt(1-2*x-3*x^2) is the g.f. of the central trinomial coefficients A002426.
The g.f. for row n is d^n/dx^n (1+x+x^2)^n/n!, which begins:
n=0: 1;
n=1: 1 + 2*x;
n=2: 3 + 6*x + 6*x^2;
n=3: 7 + 24*x + 30*x^2 + 20*x^3;
n=4: 19 + 80*x + 150*x^2 + 140*x^3 + 70*x^4;
n=5: 51 + 270*x + 630*x^2 + 840*x^3 + 630*x^4 + 252*x^5;
n=6: 141 + 882*x + 2520*x^2 + 4200*x^3 + 4410*x^4 + 2772*x^5 + 924*x^6; ...
MATHEMATICA
Flatten@Table[CoefficientList[D[(1 + x + x^2)^n/n!, {x, n}], x], {n, 0, 9}] (* Ivan Neretin, Jun 22 2019 *)
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(1/sqrt(1-2*x-3*x^2 - 4*x*y +x*O(x^n)+y*O(y^k)), n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) row(n) = my(p=(1+x+x^2)^n / n!); for (k=1, n, p = deriv(p)); Vecrev(p); \\ Michel Marcus, Jun 22 2019
CROSSREFS
Cf. A002426 (first column), A000984 (main diagonal), A122868 (row sums).
Sequence in context: A187327 A271716 A362706 * A023832 A080235 A198516
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 06 2012
STATUS
approved