login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220086
Decimal expansion of Gamma(1/7).
15
6, 5, 4, 8, 0, 6, 2, 9, 4, 0, 2, 4, 7, 8, 2, 4, 4, 3, 7, 7, 1, 4, 0, 9, 3, 3, 4, 9, 4, 2, 8, 9, 9, 6, 2, 6, 2, 6, 2, 1, 1, 3, 5, 1, 8, 7, 3, 8, 4, 1, 3, 5, 1, 4, 8, 9, 4, 0, 1, 6, 8, 8, 1, 9, 1, 4, 8, 5, 7, 6, 2, 0, 4, 7, 3, 8, 2, 3, 9, 1, 3, 7, 7, 9, 0, 5, 6
OFFSET
1,1
COMMENTS
(A220086/A220605)*(A220607/A220606) = A160389, which is the case n=7 of (Gamma(1/n)/Gamma(2/n))*(Gamma((n-1)/n)/Gamma((n-2)/n)) = 2*cos(Pi/n).
A220086*A220605*A220606*A220607*A220608*A220609 = (2*Pi)^3/sqrt(7), which is the case n=7 of product(Gamma(i/n), i=1..n-1) = sqrt((2*Pi)^(n-1)/n) (see also the second link to Wikipedia).
Continued fraction expansion: 6, 1, 1, 4, 1, 2, 2, 1, 5, 1, 10, 7, 1,...
FORMULA
Equals Pi*csc(Pi/7)/A220607, where csc is the cosecant function.
EXAMPLE
6.5480629402478244377140933494289962626211351873841351...
MATHEMATICA
RealDigits[Gamma[1/7], 10, 90][[1]]
PROG
(Maxima) fpprec:90; ev(bfloat(gamma(1/7)));
(PARI) default(realprecision, 100); gamma(1/7) \\ G. C. Greubel, Mar 10 2018
(Magma) SetDefaultRealField(RealField(100)); Gamma(1/7); // G. C. Greubel, Mar 10 2018
CROSSREFS
Sequence in context: A125089 A171537 A200096 * A094773 A205651 A168239
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Dec 12 2012
STATUS
approved