login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219721
Expansion of (1+7*x+5*x^2+7*x^3+x^4)/(1-x-x^4+x^5).
2
1, 8, 13, 20, 22, 29, 34, 41, 43, 50, 55, 62, 64, 71, 76, 83, 85, 92, 97, 104, 106, 113, 118, 125, 127, 134, 139, 146, 148, 155, 160, 167, 169, 176, 181, 188, 190, 197, 202, 209, 211, 218, 223, 230, 232, 239, 244, 251, 253, 260, 265, 272, 274, 281, 286, 293
OFFSET
0,2
COMMENTS
Positive values of y in the Diophantine equation 21*x+1 = y^2; the corresponding values of x are given in A219391.
Equivalently, numbers that are congruent to {1,8,13,20} mod 21.
The product of any two terms belongs to the sequence and therefore also a(n)^2, a(n)^3, a(n)^4 etc.
FORMULA
G.f.: (1+7*x+5*x^2+7*x^3+x^4)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = -a(-n-1) = (42*n-6*i^(n*(n-1))-7*(-1)^n+5)/8 +2, where i=sqrt(-1).
MATHEMATICA
CoefficientList[Series[(1 + 7 x + 5 x^2 + 7 x^3 + x^4)/(1 - x - x^4 + x^5), {x, 0, 60}], x]
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 8, 13, 20, 22}, 60] (* Vincenzo Librandi, Aug 18 2013 *)
PROG
(PARI) Vec((1+7*x+5*x^2+7*x^3+x^4)/(1-x-x^4+x^5)+O(x^60))
(Maxima) makelist(coeff(taylor((1+7*x+5*x^2+7*x^3+x^4)/(1-x-x^4+x^5), x, 0, n), x, n), n, 0, 60);
(Magma) I:=[1, 8, 13, 20, 22]; [n le 5 select I[n] else Self(n-1) +Self(n-4)-Self(n-5): n in [1..60]]; // Vincenzo Librandi, Aug 18 2013
CROSSREFS
Cf. A219391.
Sequence in context: A070130 A070131 A030782 * A176209 A227453 A266212
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 26 2012
STATUS
approved