login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219338
Numbers n for which n = (tau(n) - 1)^k with integer k.
1
4, 16, 27, 3125, 3375, 65536, 823543, 3748096, 52521875, 285311670611, 7625597484987, 302875106592253, 1156831381426176, 66182427701415936, 827240261886336764177, 511324276025564512546607, 1978419655660313589123979, 281633339785852578930098176
OFFSET
1,1
COMMENTS
tau(n) is the number of positive divisors of n.
FORMULA
Numbers n for which n = (tau(n) - 1)^k with integer k.
EXAMPLE
a(1) = 4 because (tau(4) - 1)^2 = (3 - 1)^2 = 4 and this is the first number satisfying this condition.
a(2) = 16 because (tau(16) - 1)^2 = (5 - 1)^2 = 16 and this is the second number satisfying this condition.
a(3) = 27 because (tau(27) - 1)^3 = (4 - 1)^3 = 27 and this is the third number satisfying this condition.
MATHEMATICA
Select[Range[10^4], IntegerQ[Log[DivisorSigma[0, #] - 1, #]] &] (* Alonso del Arte, Nov 18 2012 *)
PROG
(PARI) v=vector(18); mx=3*10^26; c=0; for(m=2, 3440639, for(k=2, 87, n=m^k; if(n>mx, next(2)); if(m==numdiv(n)-1, c++; v[c]=n))); v=vecsort(v); for(i=1, c, print1(v[i]", ")) /* Donovan Johnson, Nov 19 2012 */
CROSSREFS
Cf. A180936.
Sequence in context: A046358 A046366 A227609 * A275211 A046361 A228167
KEYWORD
nonn
AUTHOR
Zdenek Cervenka, Nov 18 2012
EXTENSIONS
a(10)-a(18) from Donovan Johnson, Nov 19 2012
STATUS
approved