login
A219020
Sum of the cubes of the first n even-indexed Fibonacci numbers divided by the sum of the first n terms.
2
1, 7, 45, 297, 2002, 13630, 93177, 638001, 4371235, 29956465, 205313076, 1407206412, 9645056785, 66107994667, 453110391657, 3105663400665, 21286529888422, 145900036590826, 1000013702089545, 6854195814790005, 46979356835860351, 322001301602738017, 2207029753248402600, 15127206968164865112
OFFSET
1,2
COMMENTS
For a Lucas sequence U(k,1), the sum of the cubes of the first n terms is divisible by the sum of the first n terms. This sequence corresponds to the case of k=3.
LINKS
FORMULA
a(n) = Sum_{k=1..n} A001906(k)^3 / Sum_{k=1..n} A001906(k).
a(n) = A163198(n) / A027941(n).
a(n) = 11*a(n-1) - 33*a(n-2) + 33*a(n-3) - 11*a(n-4) + a(n-5). - Vaclav Kotesovec, May 23 2013
G.f.: x*(1-4*x+x^2)/((1-x)*(1-7*x+x^2)*(1-3*x+x^2)). [Bruno Berselli, Jun 07 2013]
MATHEMATICA
Table[Fibonacci[2*n+1]/4 + LucasL[4*n+2]/20 - 2/5, {n, 1, 20}] (* Vaclav Kotesovec, May 23 2013 *)
With[{f=Fibonacci[Range[2, 50, 2]]}, Accumulate[f^3]/Accumulate[f]] (* Harvey P. Dale, Feb 17 2020 *)
PROG
(PARI) Vec(x*(1-4*x+x^2)/((1-x)*(1-7*x+x^2)*(1-3*x+x^2)) + O(x^100)) \\ Altug Alkan, Dec 09 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Nov 09 2012
STATUS
approved