login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218769
Let (p,p+2) be the n-th twin prime pair. a(n) is the least integer r > 1 for which the interval (r*p, r*(p+2)) contains no primes, or a(n)=0, if no such r exists.
3
0, 0, 0, 0, 4, 0, 2, 2, 2, 2, 3, 2, 5, 5, 4, 5, 4, 4, 3, 2, 2, 4, 4, 2, 2, 2, 6, 3, 3, 4, 3, 2, 3, 2, 2, 7, 3, 3, 2, 2, 2, 6, 0, 3, 2, 2, 5, 5, 23, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 5, 2
OFFSET
1,5
COMMENTS
For n<=20000, the largest a(n) is a(49)=23. a(n)=0 for n = 1, 2, 3, 4, 6, 43, 37890, 606457, ... corresponding to the twin primes (p, p+2) with p=3, 5, 11, 17, 41, 1277, 5995727, 143556431, ....
LINKS
Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
EXAMPLE
The 13th twin prime pair is {179, 181}. For r = 2 the range {358, ..., 362} contains prime 359; for r = 3, the range {537, ..., 543} contains prime 541; for r = 4, the range {716, ..., 724} contains prime 719. But for r = 5, the range {895, ..., 905} does not contain any prime. Thus a(13) = 5.
MATHEMATICA
rmax = 100; p1[1] = 3; p1[n_] := p1[n] = (p = NextPrime[p1[n-1]]; While[ !PrimeQ[p+2], p = NextPrime[p]]; p); a[n_] := Catch[ For[r = 2, r <= rmax, r++, If[ PrimePi[r*p1[n]] == PrimePi[r*(p1[n] + 2)], Throw[r], If[r == rmax, Throw[0]]]]]; Table[ a[n] , {n, 1, 65}] (* Jean-François Alcover, Dec 13 2012 *)
KEYWORD
nonn
EXTENSIONS
Typo in definition corrected by Jonathan Sondow, Dec 21 2012
STATUS
approved