OFFSET
0,3
EXAMPLE
O.g.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 111*x^4 + 911*x^5 + 8622*x^6 +...
where
A(x) = 1 + x/(1-x)^2*exp(-x/(1-x)^2) + 2^2*x^2/(1-2*x)^4/2!*exp(-2*x/(1-2*x)^2) + 3^3*x^3/(1-3*x)^6/3!*exp(-3*x/(1-3*x)^2) + 4^4*x^4/(1-4*x)^8/4!*exp(-4*x/(1-4*x)^2) + 5^5*x^5/(1-5*x)^10/5!*exp(-5*x/(1-5*x)^2) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); A=sum(k=0, n, k^k/(1-k*x)^(2*k)*x^k/k!*exp(-k*x/(1-k*x)^2+x*O(x^n))); polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2012
STATUS
approved