login
Hilltop maps: number of nX7 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..2 nX7 array
1

%I #4 Nov 03 2012 13:40:01

%S 97,14189,1798967,228191491,28976110305,3679019688741,467122877883141,

%T 59310238629598533,7530575876378444705,956151509525182089139,

%U 121401831920934712845239,15414298517143294281162561

%N Hilltop maps: number of nX7 binary arrays indicating the locations of corresponding elements not exceeded by any horizontal or antidiagonal neighbor in a random 0..2 nX7 array

%C Column 7 of A218592

%H R. H. Hardin, <a href="/A218591/b218591.txt">Table of n, a(n) for n = 1..141</a>

%F Empirical: a(n) = 97*a(n-1) +3229*a(n-2) +67623*a(n-3) +662135*a(n-4) +5012349*a(n-5) +14073662*a(n-6) +102254788*a(n-7) -197774330*a(n-8) +699356400*a(n-9) -2086430924*a(n-10) +1575418802*a(n-11) -113841265*a(n-12) -1350570577*a(n-13) +6374137857*a(n-14) -16954790363*a(n-15) +24033834796*a(n-16) -24052990754*a(n-17) +30677592701*a(n-18) -28465330929*a(n-19) +18395816001*a(n-20) -14524792821*a(n-21) +12044876400*a(n-22) -4744942902*a(n-23) +2035841238*a(n-24) -2161783296*a(n-25) +547689762*a(n-26) -35660088*a(n-27) +165258873*a(n-28) -31667031*a(n-29) -9464607*a(n-30) -4218723*a(n-31) +1003833*a(n-32) +531441*a(n-33) for n>36

%e Some solutions for n=3

%e ..0..0..1..0..0..1..0....0..1..0..0..1..0..1....0..1..0..0..0..1..1

%e ..0..0..1..0..0..1..1....0..0..1..1..0..1..0....0..0..0..0..0..0..0

%e ..0..0..1..0..1..1..0....0..0..1..0..1..1..1....0..0..1..1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Nov 03 2012