Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jun 05 2013 12:02:17
%S 1,0,1,1,2,3,8,12,23,44,86,163,308,576,1074,1991,3680,6800,12626,
%T 23644,44751,85567,164941,319694,621671,1211197,2362808,4614173,
%U 9018299,17635055,34486330,67408501,131642673,256795173,500346954,973913365,1894371802,3683559071
%N Number of times when an even number is encountered, when going from 2^(n+1)-1 to (2^n)-1 using the iterative process described in A071542.
%C Ratio a(n)/A213709(n) develops as: 1, 0, 0.5, 0.333..., 0.4, 0.333..., 0.471..., 0.400..., 0.426..., 0.449..., 0.480..., 0.494..., 0.502..., 0.501..., 0.497..., 0.489..., 0.479..., 0.469..., 0.461..., 0.455..., 0.453..., 0.454..., 0.458..., 0.464..., 0.469..., 0.475..., 0.480..., 0.484..., 0.488..., 0.492..., 0.496..., 0.499..., 0.502..., 0.503..., 0.505..., 0.505..., 0.505..., 0.505..., 0.505..., 0.504..., 0.504..., 0.503..., 0.503..., 0.502..., 0.502..., 0.502..., 0.503..., 0.503... (See further comments at A218543).
%H Antti Karttunen, <a href="/A218542/b218542.txt">Table of n, a(n) for n = 0..47</a>
%F a(n) = Sum_{i=A218600(n) .. (A218600(n+1)-1)} A213728(i).
%F a(n) = A213709(n) - A218543(n).
%e (2^0)-1 (0) is reached from (2^1)-1 (1) with one step by subtracting A000120(1) from 1. Zero is an even number, so a(0)=1.
%e (2^1)-1 (1) is reached from (2^2)-1 (3) with one step by subtracting A000120(3) from 3. One is not an even number, so a(1)=0.
%e (2^2)-1 (3) is reached from (2^3)-1 (7) with two steps by first subtracting A000120(7) from 7 -> 4, and then subtracting A000120(4) from 4 -> 3. Four is an even number, but three is not, so a(2)=1.
%o (Scheme with memoizing definec-macro): (definec (A218542 n) (if (zero? n) 1 (let loop ((i (- (expt 2 (1+ n)) n 2)) (s 0)) (cond ((pow2? (1+ i)) (+ s (- 1 (modulo i 2)))) (else (loop (- i (A000120 i)) (+ s (- 1 (modulo i 2)))))))))
%o (define (pow2? n) (and (> n 0) (zero? (A004198bi n (- n 1))))) ;; A004198 is bitwise AND
%o ;; Or with a summing-function add:
%o (define (A218542v2 n) (add A213728 (A218600 n) (-1+ (A218600 (1+ n)))))
%o (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
%Y Cf. A219662 (analogous sequence for factorial number system).
%K nonn
%O 0,5
%A _Antti Karttunen_, Nov 02 2012
%E More terms from _Antti Karttunen_, Jun 05 2013