login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218540
Reduced third-order Patalan numbers.
1
1, 1, 1, 5, 10, 66, 154, 1122, 2805, 21505, 55913, 442221, 1179256, 9524760, 25852920, 211993944, 582983346, 4835332458, 13431479050, 112400272050, 314720761740, 2652646420380, 7475639911980, 63380425340700, 179577871798650, 1530003467724498
OFFSET
0,4
COMMENTS
Obtained by removing powers of 3 in a systematic manner from the Patalan numbers A025748.
FORMULA
a(n) = A025748(n)/A108411(n).
D-finite with recurrence n*(n+2)*(n-1)*a(n) + (n-1)*(n-2)*(n+4)*a(n-1) - 3*(3*n-4)*(3*n-7)*(n+2)*a(n-2) - 3*(3*n-10)*(n+4)*(3*n-7)*a(n-3) = 0, n >= 4.
MAPLE
A218540 := proc(n)
option remember;
if n <=2 then
1;
elif n = 3 then
5 ;
else
(n-1)*(n-2)*(n+4)*procname(n-1)-3*(3*n-4)*(3*n-7)*(n+2)*procname(n-2)-3*(3*n-10)*(n+4)*(3*n-7)*procname(n-3) ;
-%/n/(n+2)/(n-1) ;
end if;
end proc:
CROSSREFS
Sequence in context: A062848 A054884 A061518 * A174937 A180851 A056316
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 01 2012
STATUS
approved