login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218539
Numbers that are equal to the sum of the uniform platonic polyhedral (figurate) numbers (tetrahedral, cubic, octahedral, dodecahedral, or icosahedral) on each of their digits.
0
0, 1, 20, 21, 24, 153, 240, 241, 289, 304, 324, 370, 371, 407, 440, 441, 593, 739, 2167, 2284, 2348, 2484, 2583, 2860, 2861, 3009, 3029, 3093, 3249, 4288, 5859, 6888, 7996, 9898
OFFSET
1,3
COMMENTS
153, 370, 371, and 407 are well known with regard to the cubic numbers.
EXAMPLE
The octahedral numbers are represented by the formula, y(x)=(2x^3+x)/3; apply this formula to each of the digits in a(18)=739, i.e., y(7)=231, y(3)=19, y(9)=489; sum=739; the dodecahedral numbers are represented by the formula, y(x)=x(3x-1)(3x-2)/2; apply this formula to each of the digits in a(34)=9898, i.e., y(9)=2725, y(8)=2024; y(9)=2725, y(8)=2024; sum=9898.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Thomas S. Pedigo, Nov 01 2012
STATUS
approved