login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-colorings of the icosahedral graph.
6

%I #25 Dec 23 2017 00:11:07

%S 0,0,0,0,240,80400,4012560,76848240,825447840,6005512800,33014872800,

%T 146953113120,554770648080,1835249610480,5448481998960,14778817981200,

%U 37135461679680,87386816771520,194264943433920,410876964198720,831638579799600,1618744884780240

%N Number of n-colorings of the icosahedral graph.

%D N. Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993. See p. 69.

%H Eric M. Schmidt, <a href="/A218514/b218514.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/IcosahedralGraph.html">Icosahedral Graph</a>

%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).

%F a(n) = n(n-1)(n-2)(n-3)(n^8 -24n^7 +260n^6 -1670n^5 +6999n^4 -19698n^3 +36408n^2 -40240n +20170).

%F Hence a(n) = n^12 - 30*n^11 + 415*n^10 - 3500*n^9 + 20023*n^8 - 81622*n^7 + 241605*n^6 - 517360*n^5 + 780286*n^4 - 782108*n^3 + 463310*n^2 - 121020*n (cf. A296917) - _N. J. A. Sloane_, Dec 23 2017

%F G.f.: -240*x^4*(12547*x^8 +131518*x^7 +481078*x^6 +743494*x^5 +485740*x^4 +128698*x^3 +12442*x^2 +322*x +1)/(x-1)^13. [_Colin Barker_, Nov 06 2012]

%o (Sage)

%o def A218514(n) : return n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170);

%o (Maxima)

%o A218514(n):=n*(n-1)*(n-2)*(n-3)*(n^8 -24*n^7 +260*n^6 -1670*n^5 +6999*n^4 -19698*n^3 +36408*n^2 -40240*n +20170)$

%o makelist(A218514(n), n, 0, 30); /* _Martin Ettl_, Nov 03 2012 */

%Y Cf. A052762, A140986, A115400, A218513, A296916, A296917..

%K nonn,easy

%O 0,5

%A _Eric M. Schmidt_, Oct 31 2012