login
A218502
10th iteration of the hyperbinomial transform on the sequence of 1's.
2
1, 11, 141, 2081, 34961, 661601, 13970521, 326429401, 8377176001, 234573153281, 7125155956601, 233554674134441, 8223284332647361, 309711995280132001, 12430859603012736601, 529915231307371964201, 23918971999180778999681, 1139982481554110359552001
OFFSET
0,2
COMMENTS
See A088956 for the definition of the hyperbinomial transform.
LINKS
FORMULA
E.g.f.: exp(x) * (-LambertW(-x)/x)^10.
a(n) = Sum_{j=0..n} 10 * (n-j+10)^(n-j-1) * C(n,j).
Hyperbinomial transform of A218501.
a(n) ~ 10*exp(10+exp(-1))*n^(n-1). - Vaclav Kotesovec, Oct 18 2013
MAPLE
a:= n-> add(10*(n-j+10)^(n-j-1)*binomial(n, j), j=0..n):
seq (a(n), n=0..20);
MATHEMATICA
Table[Sum[10*(n-j+10)^(n-j-1)*Binomial[n, j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 18 2013 *)
CROSSREFS
Column k=10 of A144303.
Sequence in context: A205084 A083078 A048965 * A293988 A024141 A289216
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 30 2012
STATUS
approved