login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218250
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x^2*A(x))^2.
1
1, 1, 3, 7, 18, 49, 135, 383, 1104, 3228, 9554, 28557, 86095, 261487, 799323, 2457327, 7592620, 23565444, 73437284, 229691620, 720800824, 2268820824, 7161255962, 22661307317, 71878917199, 228487568175, 727779875401, 2322485254421, 7424488376794, 23773398866825
OFFSET
0,3
FORMULA
Recurrence: 2*(n+2)*(2*n+5)*(43*n^3 - 48*n^2 - 43*n + 12)*a(n) = 2*(2*n+1)*(2*n+3)*(43*n^3 - 5*n^2 - 94*n + 8)*a(n-1) + 2*(344*n^5 + 132*n^4 - 1303*n^3 - 399*n^2 + 554*n + 168)*a(n-2) + (473*n^5 - 528*n^4 - 1711*n^3 + 1866*n^2 + 1256*n - 960)*a(n-3) - 6*(86*n^5 - 225*n^4 - 321*n^3 + 794*n^2 + 160*n - 416)*a(n-4) + 4*(n-4)*(n-2)*(43*n^3 + 81*n^2 - 10*n - 36)*a(n-5). - Vaclav Kotesovec, Sep 10 2013
a(n) ~ c*d^n/n^(3/2), where d = 3.361963061296269297... is the root of the equation -4 + 12*d - 11*d^2 - 16*d^3 - 8*d^4 + 4*d^5 = 0 and c = 2.227460242885392531198808525530878354... - Vaclav Kotesovec, Sep 10 2013
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 18*x^4 + 49*x^5 + 135*x^6 + 383*x^7 +...
where
A(x) = 1 + (1+2*x)*x*A(x) + (2+x)*x^3*A(x)^2 + x^5*A(x)^3.
MATHEMATICA
nmax=20; aa=ConstantArray[0, nmax]; aa[[1]]=1; Do[AGF=1+Sum[aa[[n]]*x^n, {n, 1, j-1}]+koef*x^j; sol=Solve[Coefficient[(1 + x*AGF) * (1 + x^2*AGF)^2 - AGF, x, j]==0, koef][[1]]; aa[[j]]=koef/.sol[[1]], {j, 2, nmax}]; Flatten[{1, aa}] (* Vaclav Kotesovec, Sep 10 2013 *)
PROG
(PARI) {a(n)=local(A=1); for(i=1, n, A=(1+x*A)*(1+x^2*A)^2+x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A099483 A225034 A190255 * A267799 A218783 A103177
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 24 2012
STATUS
approved