login
A217940
Triangle read by rows: coefficients of polynomials Q_n(x) arising in study of Riemann zeta function.
1
1, 1, 1, 4, 4, 4, 36, 33, 42, 33, 576, 480, 648, 720, 456, 14400, 10960, 14900, 18780, 17900, 9460, 518400, 362880, 487200, 648240, 730800, 606480, 274800, 25401600, 16465680, 21656040, 29481585, 36149820, 36569190, 26845140, 10643745, 1625702400, 981872640, 1260878080, 1729096320, 2218287120, 2495765440, 2285697120, 1503969600, 530052880
OFFSET
1,4
LINKS
Juan Arias de Reyna, Richard P. Brent and Jan van de Lune, On the sign of the real part of the Riemann zeta-function, arXiv preprint arXiv:1205.4423, 2012
EXAMPLE
Triangle begins:
1
1, 1
4, 4, 4
36, 33, 42, 33
576, 480, 648, 720, 456
14400, 10960, 14900, 18780, 17900, 9460
518400, 362880, 487200, 648240, 730800, 606480, 274800
...
MATHEMATICA
Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[ Binomial[n-1, j]*Binomial[n-1, j+1]* Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], {j, 0, n-2}]; Table[q[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 13 2013 *)
CROSSREFS
Right-hand diagonal is A002190.
Sequence in context: A362374 A059812 A077725 * A353000 A372020 A182065
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Oct 23 2012
EXTENSIONS
More terms from Jean-François Alcover, Feb 13 2013
STATUS
approved