login
A217764
Array defined by a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n, read by antidiagonals.
9
1, 3, 0, 9, 1, 1, 27, 5, 4, 0, 81, 19, 14, 2, 1, 243, 65, 46, 10, 5, 0, 729, 211, 146, 38, 19, 3, 1, 2187, 665, 454, 130, 65, 15, 6, 0, 6561, 2059, 1394, 422, 211, 57, 24, 4, 1, 19683, 6305, 4246, 1330, 665, 195, 84, 20, 7, 0, 59049, 19171, 12866, 4118, 2059, 633, 276, 76, 29, 5, 1
OFFSET
0,2
COMMENTS
Columns 0,1,2,3 respectively correspond to relations R_3, R_4, R_0, R_1 defined in La Haye paper listed below.
LINKS
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
FORMULA
a(n,k) = floor((k+2)/2)*3^n - floor((k+1)/2)*2^n. a(n,k) = 5*a(n-1,k) - 6*a(n-2,k); a(0,k) = floor((k+2)/2) - floor((k+1)/2), a(1,k) = floor((k+2)/2)*3 - floor((k+1)/2)*2.
EXAMPLE
a(4,4) = 211 because floor((4+2)/2)*3^4 - floor((4+1)/2)*2^4 = 3*3^4 - 2*2^4 = 243 - 32 = 211.
CROSSREFS
Cf. a(1,k) = A084964(k+2); a(n,0) = A000244(n); a(n,1) = A001047(n); a(n,2) = A027649(n); a(n,3) = A056182(n); a(n,4) = A001047(n+1); a(n,5) = A210448(n); a(n,6) = A166060(n); a(n,7) = A145563(n); a(n,8) = A102485(n).
Sequence in context: A254006 A321329 A016645 * A096429 A196622 A196827
KEYWORD
nonn,tabl
AUTHOR
Ross La Haye, Mar 23 2013
STATUS
approved