login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217091
Lucas-Carmichael numbers with 8 prime factors.
11
199195047359, 220323712895, 259305479279, 325451502935, 472765412735, 491091874559, 498357905759, 517270926095, 609349053599, 769658803199, 832015353455, 853833772799, 898951575599, 962940227039, 1087044101759, 1122857491679, 1249765950719, 1297923596255
OFFSET
1,1
LINKS
Daniel Suteu and Donovan Johnson, Table of n, a(n) for n = 1..5323 (terms 1..1000 from Donovan Johnson)
EXAMPLE
A006972(5453) = 199195047359 = 7*11*17*19*23*31*47*239.
PROG
(PARI) upto(n, k=8) = my(A = vecprod(primes(k)), B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), my(s = sqrtnint(B\m, k)); forprime(q = p, s, my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Aug 29 2022
CROSSREFS
Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217002, A217003.
Sequence in context: A288262 A233624 A104800 * A144173 A127343 A108048
KEYWORD
nonn
AUTHOR
Donovan Johnson, Sep 26 2012
STATUS
approved