login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes that remain prime when a single "3" digit is inserted between any two adjacent decimal digits.
4

%I #22 Mar 08 2024 11:59:05

%S 11,17,19,23,29,31,37,41,43,61,73,79,89,97,101,103,127,167,173,181,

%T 211,233,239,251,271,283,307,331,359,373,439,491,509,523,547,599,673,

%U 709,733,769,877,887,937,941,991,1033,1229,1381,1619,1721,1759,1789,1901

%N Primes that remain prime when a single "3" digit is inserted between any two adjacent decimal digits.

%H Bruno Berselli, <a href="/A217063/b217063.txt">Table of n, a(n) for n = 1..1000</a> (first 275 terms from Paolo Lava)

%e 212881 is prime and also 2128831, 2128381, 2123881, 213288 and 2312881.

%p with(numtheory);

%p A217063:=proc(q,x)

%p local a,b,c,i,n,ok;

%p for n from 5 to q do

%p a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1;

%p for i from 1 to b-1 do

%p c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od;

%p if ok=1 then print(ithprime(n)); fi; od; end:

%p A217063(1000000,3);

%o (Magma) [p: p in PrimesInInterval(11, 2000) | forall{m: t in [1..#Intseq(p)-1] | IsPrime(m) where m is (Floor(p/10^t)*10+3)*10^t+p mod 10^t}]; // _Bruno Berselli_, Sep 26 2012

%o (PARI) is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=3; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ _Charles R Greathouse IV_, Sep 26 2012

%o (Python)

%o from sympy import isprime, primerange

%o def ok(p):

%o if p < 10: return False

%o s = str(p)

%o return all(isprime(int(s[:i] + "3" + s[i:])) for i in range(1, len(s)))

%o def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]

%o print(aupto(1901)) # _Michael S. Branicky_, Nov 17 2021

%Y Cf. A050674, A050711-A050719, A069246, A159236, A215417, A215419-A215421, A217044-A217047, A217062-A217065.

%K nonn,base

%O 1,1

%A _Paolo P. Lava_, Sep 26 2012