login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 6) with t_0 = t_1 = ... = t_{j-1} = 2.
7

%I #19 Nov 30 2017 16:21:35

%S 32,40,48,56,60,65,71

%N Van der Waerden numbers w(j+2; t_0,t_1,...,t_{j-1}, 3, 6) with t_0 = t_1 = ... = t_{j-1} = 2.

%D T. C. Brown, Some new van der Waerden numbers (preliminary report), Notices American Math. Society, 21 (1974), A-432.

%D V. Chvatal, Some unknown van der Waerden numbers, Combinatorial Structures and their Applications (R. Guy et al., eds.), Gordon and Breach, New York, 1970.

%H T. Ahmed, <a href="http://www.emis.de/journals/INTEGERS/papers/j6/j6.Abstract.html">Some new van der Waerden numbers and some van der Waerden-type numbers</a>, Integers, 9 (2009), A06, 65-76.

%H T. Ahmed, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ahmed/ahmed2.html">Some more Van der Waerden numbers</a>, J. Int. Seq. 16 (2013) 13.4.4

%H B. Landman, A. Robertson, and C. Culver, <a href="http://www.emis.de/journals/INTEGERS/papers/a10int2003/a10int2003.Abstract.html">Some new exact van der Waerden numbers</a>, Integers, 5(2) (2005), A10.

%Y Cf. A217005, A217007, A217008, A217058, A217059, A217236, A217237.

%K nonn,more,hard

%O 0,1

%A _Tanbir Ahmed_, Sep 25 2012

%E a(6)=71 added by _Tanbir Ahmed_, Dec 07 2012