login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217003
Lucas-Carmichael numbers with 7 prime factors.
11
3512071871, 10470856319, 11956093919, 12283814015, 13150303199, 15128703359, 15966728855, 18063158399, 21887083295, 22572006479, 23388059519, 23836221695, 23940514367, 25231063319, 25638464159, 27742047839, 28160966735, 30070781279, 31251542399, 35160944399
OFFSET
1,1
LINKS
Daniel Suteu, Table of n, a(n) for n = 1..7464 (first 1000 terms from Donovan Johnson)
EXAMPLE
A006972(1249) = 3512071871 = 7*11*17*23*31*53*71.
PROG
(PARI) upto(n, k=7) = my(A=vecprod(primes(k+1))\2, B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), forprime(q = p, sqrtnint(B\m, k), my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ Daniel Suteu, Aug 30 2022
CROSSREFS
Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217002, A217091.
Sequence in context: A017506 A017638 A221557 * A159301 A113027 A094722
KEYWORD
nonn
AUTHOR
Donovan Johnson, Sep 22 2012
STATUS
approved