login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lucas-Carmichael numbers with 6 prime factors.
11

%I #17 Sep 08 2022 05:13:39

%S 139501439,196377335,206238815,239875559,287432495,336545495,

%T 353107799,381626399,394426655,406335215,461829599,464972255,

%U 577901519,592557119,649351295,653067359,674628479,761212655,775931519,777724415,929892095,993625919,1073352959

%N Lucas-Carmichael numbers with 6 prime factors.

%H Daniel Suteu, <a href="/A217002/b217002.txt">Table of n, a(n) for n = 1..9382</a> (first 1000 terms from Donovan Johnson)

%e A006972(385) = 139501439 = 7*11*17*19*71*79.

%o (PARI) upto(n, k=6) = my(A=vecprod(primes(k+1))\2, B=n); (f(m, l, p, k, u=0, v=0) = my(list=List()); if(k==1, forprime(p=u, v, my(t=m*p); if((t+1)%l == 0 && (t+1)%(p+1) == 0, listput(list, t))), forprime(q = p, sqrtnint(B\m, k), my(t = m*q); my(L=lcm(l, q+1)); if(gcd(L, t) == 1, my(u=ceil(A/t), v=B\t); if(u <= v, my(r=nextprime(q+1)); if(k==2 && r>u, u=r); list=concat(list, f(t, L, r, k-1, u, v)))))); list); vecsort(Vec(f(1, 1, 3, k))); \\ _Daniel Suteu_, Sep 03 2022

%Y Cf. A006972 (Lucas-Carmichael numbers), A216925, A216926, A216927, A217003, A217091.

%K nonn

%O 1,1

%A _Donovan Johnson_, Sep 22 2012