login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216924
Consecutive Pythagorean primes p = A002144(r) and q = A002144(r+1) such that q - p > log(p)^2. The number a(n) is the n-th value of p.
1
5, 17, 113, 197, 461, 881, 1493, 1801, 39581, 50593, 78989, 180797, 183089, 241601, 250501, 268297, 339841, 485209, 492421, 618637, 919421, 1264337, 1561829, 1637813, 1994101, 2116129, 2191633, 2243909, 2314373, 3254929, 3422917, 3440621, 4468889, 4855297, 4874717, 5059321, 5526613, 6118769, 7856441, 9199153
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
t = {}; p = 5; Do[While[q = p; While[p = NextPrime[p]; Mod[p, 4] == 3]; p - q < Log[q]^2]; AppendTo[t, q], {25}]; t (* T. D. Noe, Sep 21 2012 *)
PROG
(PARI) r=1; v=List(); p=5; forprime(q=11, 1e7, if(q%4>1, next); if(q-p>r, r=log(p)^2\1; if(q-p>r, print1(p", "); listput(v, p))); p=q); Vec(v) \\ Charles R Greathouse IV, Sep 21 2012
CROSSREFS
Cf. A182315, A002144 (Pythagorean primes).
Sequence in context: A197912 A203114 A198027 * A009240 A180387 A324411
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Sep 20 2012
EXTENSIONS
a(22)-a(40) from Charles R Greathouse IV, Sep 21 2012
STATUS
approved