login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216664
Odd numbers n such that the decimal expansion of 1/n contains the digit "9" at position (n + 1)/2.
2
11, 17, 19, 23, 29, 47, 59, 61, 73, 91, 95, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 167, 179, 181, 189, 193, 211, 223, 229, 233, 251, 255, 257, 263, 269, 313, 325, 331, 337, 349, 353, 367, 379, 383, 389, 419, 421, 433, 441, 457, 461, 463, 477, 487, 491
OFFSET
1,1
COMMENTS
First nine terms are primes.
This is not a subsequence of A187040: 189 belongs to this sequence but not to A187040.
EXAMPLE
1/17 = .058823529..., therefore 17 is a term.
1/21 = .04761904761..., therefore 21 is not a term.
MATHEMATICA
lst = {}; Do[l = (n + 1)/2; d = Flatten@RealDigits[1/n, 10, l]; If[Join[Table[0, {-1*Last@d}], Most@d][[l]] == 9, AppendTo[lst, n]], {n, 1, 491, 2}]; lst
PROG
(PARI) forstep(n=1, 491, 2, s=(n+1)/2; "\p s"; if(Mod(floor(10^s/n), 10)==9, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 23 2013
(Python)
from itertools import count, islice
def A216664_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue+1-startvalue%2, 1), 2):
if 10**((n+1)//2)//n % 10 == 9:
yield n
A216664_list = list(islice(A216664_gen(), 20)) # Chai Wah Wu, Mar 04 2022
CROSSREFS
Cf. A187040.
Sequence in context: A050778 A316100 A049593 * A019412 A178641 A226682
KEYWORD
base,nonn
AUTHOR
STATUS
approved