%I #36 Mar 20 2014 15:17:47
%S 0,1,2,1,2,3,2,2,3,2,3,4,3,2,3,4,3,3,4,3,4,3,3,4,3,3,5,3,3,4,3,3,5,3,
%T 3,3,5,3,3,5,3,3,3,5,3,3,5,6,5,3,3,5,3,3,5,6,5,3,3,5,6,5,3,5,6,5,3,3,
%U 5,6,5,3,5,6,5,6,5,3,5,6,5,3,5,6,5,6,5,3,5,6,5,6,5,5,6,5,6,5,3,5,6,5,6,5,5,6
%N The Lambda word generated by log(3)/log(2).
%C A Lambda word is a symbolic sequence that encodes differences in the sequence i+jt, where t is irrational, 1 < t < 2.
%H Robert G. Wilson v, <a href="/A216448/b216448.txt">Table of n, a(n) for n = 0..1000</a>
%H N. Carey, <a href="http://dx.doi.org/10.1007/978-3-642-21590-2_4">On a class of locally symmetric sequences, The right infinite word Lambda Theta</a>, in Mathematics and Computation in Music in Lect. Notes in Comp. Sci., Vol. 6726, Springer, (2011), 42-55.
%H N. Carey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Carey/carey6.html">Lambda words: A class of rich words defined over an infinite alphabet</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.3.4.
%t t = Log[2, 3];
%t end = 100;
%t x = Table[Ceiling[n*1/t], {n, 0, end }];
%t y = Table[Ceiling[n*t], {n, 0, end}];
%t tot[p_, q_] := Total[Take[x, p + 1]] + (p*q) + Total[Take[y, q + 1]]
%t row[r_] := Table[tot[n, r], {n, 0, end - 1}]
%t g = Grid[Table[row[n], {n, 0, IntegerPart[(end - 1)/t]}]];
%t pos[n_] := Reverse[Position[g, n][[1, Range[2, 3]]] - 1]
%t d[n_] := (d[0] = 0; op[m_] := pos[m + 1] - pos[m];
%t Abs[Total[ContinuedFraction[op[n][[1]]/op[n][[2]]] ] ])
%t l = Prepend[Table[d[n], {n, 1, 249}], 0]
%t (* _Norman Carey_, Sep 10 2012 *)
%Y Cf. A003586, A216763, A216764.
%K nonn
%O 0,3
%A _Norman Carey_, Sep 10 2012