login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216314
G.f. satisfies A(x) = (1 + x*A(x)) * (1 + 2*x*A(x)^2).
6
1, 3, 17, 121, 965, 8247, 73841, 683713, 6493145, 62898859, 619079889, 6173490857, 62239144525, 633323532783, 6496052173665, 67093423506049, 697181754821297, 7283521984427283, 76455801614169809, 806004056649062937, 8529783421905380629, 90584730265930813607
OFFSET
0,2
COMMENTS
The radius of convergence of g.f. A(x) is r = 0.08774268876242660659654020... with A(r) = 2.04748732367111203761312028274219344812311691... where y=A(r) satisfies 6*y^3 - 14*y^2 + 4*y - 1 = 0.
r = 1/(((40465 + 387*sqrt(129))^(2/3) + 1174 + 34*(40465 + 387*sqrt(129))^(1/3)) / (40465+387*sqrt(129))^(1/3)/9). - Vaclav Kotesovec, Sep 17 2013
LINKS
R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO]
FORMULA
G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * Sum_{k=0..n} C(n,k)^2 * 2^(n-k)/A(x)^k ).
(2) A(x) = (1/x) * Series_Reversion( x*(1 - 2*x - 2*x^2)/(1+x) ).
(3) A(x) = Sum_{n>=0} A028859(n) * x^n * A(x)^n, where g.f. of A028859 = (1+x)/(1-2*x-2*x^2).
The formal inverse of the g.f. A(x) is (sqrt(1-4*x+12*x^2) - (1+2*x))/(4*x^2).
a(n) = [x^n] ( (1+x)/(1-2*x-2*x^2) )^(n+1) / (n+1).
Recurrence: 3*n*(n+1)*(43*n-76)*a(n) = n*(1462*n^2 - 3315*n + 1274)*a(n-1) + (86*n^3 - 324*n^2 + 523*n - 330)*a(n-2) + (n-2)*(2*n-5)*(43*n-33)*a(n-3)
a(n) ~ 1/516*sqrt(86)*sqrt((1448486261 + 1803807*sqrt(129))^(1/3)*((1448486261 + 1803807*sqrt(129))^(2/3) + 1280110 + 1118*(1448486261 + 1803807*sqrt(129))^(1/3)))/(1448486261 + 1803807*sqrt(129))^(1/3) * (((40465 + 387*sqrt(129))^(2/3) + 1174 + 34*(40465 + 387*sqrt(129) )^(1/3)) / (40465+387*sqrt(129))^(1/3)/9)^n / (n^(3/2)*sqrt(Pi)). - Vaclav Kotesovec, Sep 17 2013
a(n) = Sum_{k=0..n} 2^k * binomial(n+k+1,k) * binomial(n+k+1,n-k) / (n+k+1). - Seiichi Manyama, Sep 08 2024
EXAMPLE
G.f.: A(x) = 1 + 3*x + 17*x^2 + 121*x^3 + 965*x^4 + 8247*x^5 + 73841*x^6 +...
Related expansions.
A(x)^2 = 1 + 6*x + 43*x^2 + 344*x^3 + 2945*x^4 + 26398*x^5 + 244615*x^6 +...
A(x)^3 = 1 + 9*x + 78*x^2 + 696*x^3 + 6399*x^4 + 60321*x^5 + 580316*x^6 +...
where A(x) = 1 + A(x)*(1+2*A(x))*x + 2*A(x)^3*x^2.
The g.f. also satisfies the series:
A(x) = 1 + 3*x*A(x) + 8*x^2*A(x)^2 + 22*x^3*A(x)^3 + 60*x^4*A(x)^4 + 164*x^5*A(x)^5 + 448*x^6*A(x)^6 +...+ A028859(n)*x^n*A(x)^n +...
The logarithm of the g.f. equals the series:
log(A(x)) = (1*2 + 1/A(x))*x*A(x) + (1*2^2 + 2^2*2/A(x) + 1/A(x)^2)*x^2*A(x)^2/2 +
(1*2^3 + 3^2*2^2/A(x) + 3^2*2/A(x)^2 + 1/A(x)^3)*x^3*A(x)^3/3 +
(1*2^4 + 4^2*2^3/A(x) + 6^2*2^2/A(x)^2 + 4^2*2/A(x)^3 + 1/A(x)^4)*x^4*A(x)^4/4 +
(1*2^5 + 5^2*2^4/A(x) + 10^2*2^3/A(x)^2 + 10^2*2^2/A(x)^3 + 5^2*2/A(x)^4 + 1/A(x)^5)*x^5*A(x)^5/5 +...
Explicitly,
log(A(x)) = 3*x + 25*x^2/2 + 237*x^3/3 + 2361*x^4/4 + 24203*x^5/5 + 252757*x^6/6 + 2674185*x^7/7 + 28567105*x^8/8 +...+ L(n)*x^n/n +...
where L(n) = [x^n] (1+x)^n/(1-2*x-2*x^2)^n.
MATHEMATICA
CoefficientList[1/x * InverseSeries[Series[x*(1 - 2*x - 2*x^2)/(1+x), {x, 0, 20}], x], x] (* Vaclav Kotesovec, Sep 17 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + 2*x*(A+x*O(x^n))^2)); polcoeff(A, n)}
(PARI) {a(n)=polcoeff( (1/x)*serreverse( x*(1-2*x-2*x^2)/(1+x +x*O(x^n))), n)}
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*2^(m-j)/A^j)*x^m*A^m/m))); polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 03 2012
STATUS
approved