login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216073
The list of the a(n)-values in the common solutions to k+1=b^2 and 6*k+1=a^2.
1
1, 7, 17, 71, 169, 703, 1673, 6959, 16561, 68887, 163937, 681911, 1622809, 6750223, 16064153, 66820319, 159018721, 661452967, 1574123057, 6547709351, 15582211849, 64815640543, 154247995433, 641608696079, 1526897742481, 6351271320247, 15114729429377, 62871104506391
OFFSET
1,2
COMMENTS
The equations are equivalent to the Pell equation a^2 - 6*b^2 = -5 with the 2 fundamental solutions (1;1) and (7;3) and the solution (5;2) for the unit form.
The associated b(n) are in A080806.
A181442(n) = (A080806(n) + 1)/2.
A180483(n) = (a(n) + 5)/2.
FORMULA
a(n) = 10*a(n-2) - a(n-4).
a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(1+7*x+7*x^2+x^3)/(1-10*x^2+x^4).
a(2*n+1) = ((1+r)*(5+2*r)^n + (1-r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.
a(2*n+2) = ((7+3*r)*(5+2*r)^n + (7-3*r)*(5-2*r)^n)/2 where r=sqrt(6) and 0<=n.
a(n) = -((5-2*r)^(1/4)*((2*r+5)^((-1)^n/4+n/2)*(-1)^n - r*(2*r+5)^((-1)^n/4+n/2)) + (2*r+5)^(1/4)*((5-2*r)^((-1)^n/4+n/2)*(-1)^n + (5-2*r)^((-1)^n/4+n/2)*r))/(2*(5-2*r)^(1/4)*(2*r+5)^(1/4)) with r=sqrt(6) and 1<=n. - Alexander R. Povolotsky, Sep 01 2012
a(n) = b(n) +7*b(n-1) +7*b(n-2) +b(n-3), where b(n) = (1/2)*(1 +(-1)^n)* ChebyshevU(n/2, 5). - G. C. Greubel, Apr 28 2022
MAPLE
a(1)=1: a(2)=7: a(3)=17: a(4)=71:
for n from 5 to 20 do
a(n)=10*a(n-2)-a(n-4):
printf("%9d%20d\n", n, a(n)):
end do:
MATHEMATICA
LinearRecurrence[{0, 10, 0, -1}, {1, 7, 17, 71}, 50] (* G. C. Greubel, Feb 22 2017 *)
PROG
(PARI)
a(n) = if(n<1, 0, if(n<5, [1, 7, 17, 71][n], 10*a(n-2)-a(n-4) ) );
/* Joerg Arndt, Sep 03 2012 */
(SageMath)
def b(n): return (1/2)*(1+(-1)^n)*chebyshev_U(n//2, 5)
def A216073(n): return b(n) +7*b(n-1) +7*b(n-2) +b(n-3)
[A216073(n) for n in (0..50)] # G. C. Greubel, Apr 28 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Sep 01 2012
STATUS
approved