login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216033
Numbers k such that every prime factor of k^2 + 1 is congruent to 1 (mod 8).
1
4, 16, 20, 24, 36, 40, 56, 64, 84, 100, 116, 120, 124, 140, 144, 156, 160, 176, 180, 184, 196, 204, 224, 236, 240, 256, 260, 264, 276, 280, 284, 296, 300, 324, 340, 344, 384, 396, 400, 404, 420, 436, 440, 444, 464, 480, 484, 496, 516, 536, 540, 544, 556, 576
OFFSET
1,1
COMMENTS
From Robert Israel, Mar 29 2020: (Start)
All terms are divisible by 4.
Includes all terms of A005574 that are divisible by 4. (End)
LINKS
EXAMPLE
64 is in the sequence because 64^2 + 1 = 17*241 and {17, 241} == 1 (mod 8).
MAPLE
with(numtheory):for n from 1 to 1000 do:x:=factorset(n^2+1):n1:=nops(x):s1:=0:for m from 1 to n1 do: if irem(x[m], 8)=1 then s1:=s1+1:else fi:od:if s1=n1 then printf(`%d, `, n):else fi:od:
# Alternative:
select(n -> numtheory:-factorset(n^2+1) mod 8 = {1}, 4*[$1..1000]); # Robert Israel, Mar 29 2020
MATHEMATICA
Select[Range[576], Union[Mod[Transpose[FactorInteger[#^2 + 1]][[1]], 8]] == {1} &] (* T. D. Noe, Aug 31 2012 *)
Select[Range[600], AllTrue[FactorInteger[#^2+1][[All, 1]], Mod[#, 8]==1&]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 31 2021 *)
PROG
(Magma) [n: n in [1..600] | forall{PrimeDivisors(n^2+1)[i]: i in [1..#PrimeDivisors(n^2+1)] | IsOne(PrimeDivisors(n^2+1)[i] mod 8)}]; // Bruno Berselli, Aug 30 2012
CROSSREFS
Sequence in context: A328465 A280844 A277887 * A071966 A349521 A326781
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 30 2012
STATUS
approved