login
A215790
Number of permutations of 0..floor((4*n-1)/2) on even squares of an 4*n array such that each row, column, diagonal and (downwards) antidiagonal of even squares is increasing
0
1, 1, 1, 2, 10, 29, 262, 932, 11694, 46988, 727846, 3166688, 56797272, 261286670, 5219906670, 25024705056
OFFSET
1,4
COMMENTS
Row 4 of A215788
EXAMPLE
Some solutions for n=5
..0..x..1..x..2....0..x..1..x..2....0..x..1..x..4....0..x..1..x..4
..x..3..x..4..x....x..3..x..5..x....x..2..x..5..x....x..2..x..5..x
..5..x..6..x..8....4..x..6..x..7....3..x..6..x..8....3..x..6..x..7
..x..7..x..9..x....x..8..x..9..x....x..7..x..9..x....x..8..x..9..x
CROSSREFS
Sequence in context: A047112 A190186 A032250 * A133485 A215954 A098425
KEYWORD
nonn
AUTHOR
R. H. Hardin Aug 23 2012
STATUS
approved