login
A215771
Number T(n,k) of undirected labeled graphs on n nodes with exactly k cycle graphs as connected components; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
15
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 3, 7, 6, 1, 0, 12, 25, 25, 10, 1, 0, 60, 127, 120, 65, 15, 1, 0, 360, 777, 742, 420, 140, 21, 1, 0, 2520, 5547, 5446, 3157, 1190, 266, 28, 1, 0, 20160, 45216, 45559, 27342, 10857, 2898, 462, 36, 1, 0, 181440, 414144, 427275, 264925, 109935, 31899, 6300, 750, 45, 1
OFFSET
0,9
COMMENTS
Also the Bell transform of A001710. For the definition of the Bell transform see A264428 and the links given there. - Peter Luschny, Jan 21 2016
LINKS
EXAMPLE
T(4,1) = 3: .1-2. .1 2. .1-2.
. .| |. .|X|. . X .
. .3-4. .3 4. .3-4.
.
T(4,2) = 7: .1 2. .1-2. .1 2. o1 2. .1 2o .1-2. .1-2.
. .| |. . . . X . . /|. .|\ . . \|. .|/ .
. .3 4. .3-4. .3 4. .3-4. .3-4. o3 4. .3 4o
.
T(4,3) = 6: .1 2o .1-2. o1 2. o1 2o o1 2. .1 2o
. .| . . . . |. . . . / . . \ .
. .3 4o o3 4o o3 4. .3-4. .3 4o o3 4.
.
T(4,4) = 1: o1 2o
. . .
. o3 4o
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 3, 7, 6, 1;
0, 12, 25, 25, 10, 1;
0, 60, 127, 120, 65, 15, 1;
0, 360, 777, 742, 420, 140, 21, 1;
MAPLE
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1,
add(binomial(n-1, i)*T(n-1-i, k-1)*ceil(i!/2), i=0..n-k)))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
# Alternatively, with the function BellMatrix defined in A264428:
BellMatrix(n -> `if`(n<2, 1, n!/2), 8); # Peter Luschny, Jan 21 2016
MATHEMATICA
t[n_, k_] := t[n, k] = If[k < 0 || k > n, 0, If[n == 0, 1, Sum[Binomial[n-1, i]*t[n-1-i, k-1]*Ceiling[i!/2], {i, 0, n-k}]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
rows = 10;
t = Table[If[n<2, 1, n!/2], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
PROG
(Sage) # uses[bell_matrix from A264428]
bell_matrix(lambda n: factorial(n)//2 if n>=2 else 1, 8)
CROSSREFS
Columns k=0-10 give: A000007, A001710(n-1) for n>0, A215772, A215763, A215764, A215765, A215766, A215767, A215768, A215769, A215770.
Diagonal and lower diagonals give: A000012, A000217, A001296, A215773, A215774.
Row sums give A002135.
T(2n,n) gives A253276.
Sequence in context: A116089 A122016 A067882 * A110033 A213666 A166407
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 23 2012
STATUS
approved